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Abstract.

Generalizability

When class is the unit of analysis, estimates of

the dependability of class means are frequently required.

.z

Using classical'test theory it is-difficult to treat this

-problem adequately. In this paper, we consider .t/le
40r.

dability of class means by applying generalizability theory il

to 'a split-plot design in which students are nested,*ithin

c.lasses. Using the plit-plot design we'obtain four distinct

generalizabilit coefficients. We then compare these

four coefficients with each other and with three previously

reported reliability coefficients. We find that each of

the three reliability coefficients is related to one or.more

generalizability coefficients. However, none of the

reliability coefficients is equivalent to the.generalizabilit

coefficient which is, in our judgment, usually the mist

appropriate co

class means.

icient for describing the dependability of
0.
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The Generalizability of Class Means

Introduction

2

Recently, a number of researchers have given serious

consideration,to the problem of estimating reliability when

- the unit of analysis is a class mean on some other aggregate

s'core for a set of persons. Haney (1974a, 1974b) has reviewed

important aspects of the relevant literature.

,The -study of this topic has beeri motivated by the

analysis of data from several different sources. In particular,

large scale evaluations, such as those undertaken for Head

Start (see Smith & Bissell, 1970) and Follow Through (see Abt

Associate.s, 1974), frequently require estimates of reliability

when class is the unit of analysis. Similar issues arise

in the study of course evaluation questionnaires (see Kane,

Gillmor, & Crooks, 1974):

Using concepts from classical reliability theory,

ShaycroEt (1962), Wiley (1970), and Thrash and Porter (1974)
t

have developed three different coefficients for estimat ing the

reliability of class means. The procedures used to develop

these thee coefficients all assume that an observed score

is''the sum of a true score and an undifferentiatederror

term. Horeftr, each of these procedures makes different

specific assumptions about whati'constitutes an appropriate

N
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estimte of the error variance. As a result, each procedure

gives a different estimate of the reliability ofclass means.

Since the thee procedures will not, in generifil, lead Ito,_

even appr9ximately equal estimates of the reliability

of class-means, of considerable importance to, determine

. .

the appropriate coefficient for any particular application.

Within the context of classical reliability theory,

it is difficult to compare the three .procedures_ and arrive

at reasonable conclusions about their relative merits. 'IP

Difficulty in comparing the proposed reliability coefficirts

exists because these coefficients .are derived from statistical

models which are based on different assumptions. In particular,

the variance attributed to error arises from different sources

in the three models. However, the

coefficients can be compared directly within the context

of a more comprehensive and detailed model.

Brennan (in'preas), Kane et al. (1974), and Haney (1974a),
)4

have. suggested that, the reliabilitSlipf class means be

approached through generalizability theory, as explicated by

CrOnbach, Gleset, Nanda, and Rajaratnam (1972). Generalizabijity

theory extends reliability theory by allowing for a'multi-
.

dimensional interpretation of error which, in turn, provides

a much more systematicand precise method for studying the

dependability of class means.

JO



Geperalizability

4

In this paper, we consider the dependability of class
,...

means by applying generalizability theory to a split-plot
i

.

design in which students are nested within classes.

Using the.split -plot design we obtain four distinct.
, \

generalizability coefficients. We then compare these four

generalizability coefficients with eachiother and with the

-,three previously reported reliability coefficients.- We find

that each of the thre reliability coefficients is related

to one or more generalizability coefficients. However, none
%

of the reliability coefficients is equivalent to the

/generalizability coefficient which is, in our judgment,

usually the most appropriate coefficient fdr describingthe
N ,

dependability of class means.

. .
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GeneraliZability Theory

for a thorough presentation of generalizability theory,

see The Dependability of Behavioral Measurements (Cronbach

et al., 1972). A briefer. introduction to many of the basic

ideas is found in Lindquist (1953). Here we discuss some

concepts-from generalizability theory that relate to our

subsequent treatment of the dependability of class means.

Overview

The purpose cif both generalizability theory and reliability

4. ,

theory is to characterize the depend4bility.of measurements.

Classical reliability theory assumes that errors of measurement

are sampled from an undifferentiated univariate distribution.

. In order to estimate the proportion of observed score variance

attributable to error, reliability theory uses correlations and

one -iay analysis of variance (ANOVA). By contrast, generaliza-
.

bility.theory recognizes the existence of multiple sources of

error, and allows for the use'of any ANOVA design in order to

estimate the nitudeof the, variance components.

Although geheralizability theory borrows its statistical

odels and research designs from ANOVA, there are some changes
. ,
in terminology and interpretation. ANOVAis typically used to

test the statistical significance of hypotheses; the mean'squares

1' 8
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or.,estimated components of /ariance are not of primary interest.

Fri generalizability theory .the emphasis is reversed. The

components of variance and the coefficients of generalizability

computed from these variance components are interpre46d as

descriptive statistics; statistical significance plays no

essential role. Cronbach et al. (1972, p. 192) actually advise

against the use of tests of si,gnificance for the variance

) components.

Terminology

In generalizability theory, any observation on some unit

. of analysis (e.g..,, school, class, or s.Cudent) is. taken from a .

larger set'or universe of observations. Any ?bsetvation from

this universe can be characterized:by the conditions under which
.

.

it is made. The-set/o all possible conditions of a particular

kind is called a face . For example, when class is the unit of

analysis, the conditions of observation are characterized by

an item facet and a student facet. _This terminology is slightly

different from that typically used in statistics, where classes,
lak

items, and students would all be referred to as dimensions. The

use of the term "facet" in generalizdbility theory serves to

emphasize the distinction between the unit of analysis which is

,,being observed and the facets, which indicate'the conditions

under which the observations are Made.

S.

40 ',v., 4,.
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41F

Gen&ralizability theory also emphasizes. the distitnction.'
lk

between G studies, which examine the dependability of some

measurement procedure, and D studies, which provide the data

for substantive decisions. -The purpose of the G ttudy is to

estimate components of variances which may then be used to
0

estimate generalizability coefficients for a variety of

D studies-i- The G study and the D study may be ye same study,

or*they may be different studies using the same design.

Generally, however, G studies are most useful when they employ 0

complex designs and large sample sizes to provide stable esti-

mates of as many variance components as possible. These com-
,

ponents'can then be _used to estimate generalizability coeffi-

cients for various D study designs before any D study isr

implemented.-

In the discussion that follows, it will be useful to

employ some additional terminology from generalizability pleory.

According to Cronbach et al (1972),

(t)he test'developer or other investigator who carries out

a G study takes certain facets into donsideration'and, with

respect to each facet, considers a certain range of conditions.

The observations encompaSsed-by the possible cohbinAtions

of conditions' that the G study reesents is called the
. ,

universe of admissible observations. We may also speak of

the universe of admitsible conditions of a certain feet.

0
"%.
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A decision maker, applying'essenbially thelsame

measuring technique, proposes to *generalize tO.some

universe of conditions all of which he sees as .eliciting

samples of the same information. We refer to that as

the universe of generalization. The G study can serve

this decision Faker only if its universe of admissible

conditions is identibalto or includes the proposed

universe .of generalization. Different decision makers

may propose different uniidrses of generalization. A

G study that'defines-the universe of admissible obser-

vations broadly, encompassing all the likely universes

Of geheralizatiOn, will bce useful to various decision

makers. (p. 20)

The decision maker is generally interested in the mean

of the observations over the universe of generalizatiort called

the universe score. Universe scores are not directly obserx;able

and are usually estimated by the mean over some sample of obser-

vations. The dependability of-these estimates is'reflected by

the value of a generalizability coefficient.

Coefficients of generalizabili are defined as the ratio

of the universe score variance to the expected obs'erved,score
A.%

variance. These coefficients are essentially intraclass

'correlation coefficients with universe score variance replacihg

..e) he true score variance of classical test theory (Cronbach,

- 11



Generalizability

9

Ikeda, & Avner, 1964). The observed score variance has
4

essentially the same interpretation in both formulations.

Background

Many of the ideas that'underlie generalizability

theory are ndt new. In fact, Lindquist (1953) and, to a

lesser extent, Hoyt (1941) suggested procedures for calculating'

reliability that foreshadow the approach of geNFalizability

theory. Using a'randoMized block design and basic principles

from reliability and analysis of variance' both Liribiquist,and

Hoyt calculated intraclass correlation coefficients' (generali-

. zability coefficierits) that are algebraically equivalent to

1 Kuder and Richardson,'s (19,37) Formula 20 and Cronbagh's, (1951)
1!

Coefficient a (see Brennan, in press).

Generalizability theory extends the work of. Hoyt and

Lindquist td multi-faceted statistical and measurement models.

In'subsequent sections of this paper we concentrate upon one

such model, the split-plot design, as a basis for consiaring

the dependability of class means,.

The Split-Plot Design as a Model for

the Generalizability of.Class Means

Split-Plot Design

In most situations, when the dependability of class means

is unaerstudr,'the design is that designated by Cr nbach et al.

(1972) as design V-B. This 'design is often referred to as a.

12
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split -plot _design in/ standard excpe2imental-deign texts e.g.,
* ,

Kirk; 168, and Winer, 1971).. In thiS design.student-S'are'
. ..

nested within classes and crossed with items. TITUS, each.digs4 - -.,
., .

. .,
. _

.- t . _ -

contains a different set-.of students, but the same set of. items

are administered to the students'in all classes.

The structural model for this design-is:

X
csi

= p + a + eir +c .s(c) + a + aa
ci is(c) 0(csi)

, (1)

where'

=
,

..a = effect for
c. _

grand mean

s 2 (9411- 1, 2, ... , n ),
c

=.effect for s ent s (s = 1, 2; ... , n
-S

)ITS (c) - -
'4,

-- .116ed within class c,

14 17: effect for item i ( = 1, 2,.i ... , n.1 ), ,
.

± _
(:(

,.

ci
= class by item interaction, .

6n?is(c) ,= item b1 person (nested within class) interaction, and
,

.

!C) (C.Si) .:=
iexperimental error (o is a replication.subscriptl.

_-_ .

. ,

'Following Kirk (1968), the subscript`c referring to the nested

treatment, class, is'placed within parAntheses. To simplify

our discussion, we will assume in this:paper that the number of f.
..

studentswithinaciass,n...,is a constant over ail classes.

.4

- 13
,
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The nesting of students within classes indicated in

Equation 1 results in a Oonfounding of the effects due to...

classes and students. The implications of this confounding

in the split-plot design are evident from a consideration of

ti

the analogous three-way factorial design in which classAs,

Students, and items are all crossed:

- X .

c
= p 4 a + Tr 4 cm 4--.(3. -

csa. s,_. 'cs, 1

-, '
+ as

147. 4- et ;Os' + e ------ - (2)
ci is dis -o (csi) ----

-...

If the factorial design were ap'propriat'e, then every student

would.appear in each and every class, and the student effect

'could be estimated independently of the class effect.

Coilfounding the Split-Plot Design

The differences between the model equations foL the

split-plot alld factorial designs areattributable to the fact

that in the factorial design (Equation 2)'students are crossed

with classes, and in the sprit-plot design (Equation-1)-
/

students are nested within classes. This nesting in the split-

plot design.results in a confounding of at least/ two sets of

effects represented in Equation 2.

First, the student main effect is confounded.with. the class

by student interaction;. that is, ffs(c) in the split-e.plot design

14

se
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represents the cdmbiped cpntributiORof the student effect and

the student.by class interacti4on-, Trs t_ixacs, iri,the factorial

design. For' the spl-i:t---Lplot deSign, each stud is observed

in only one class; thus, there is no way:to:estimate the ,/

student effect independent of the clasp by student interaction.
Similarly, the student by iteminteractidnj.s, confounded

with the class by student by item interaction;",thut,13.

in the split-plot design takes the placeofiTi-': +'aem
, is

. --
in the.factorial deSign. .

Also, in/the absence WreplicAiOns,
,

another type 'of confoundi,ng:.in.bristh\designs. When there :is
, . . - .-

,-

only one,observatipn,for a.given student responding to a given
, .

item, then, ,,for Ei uat i i o- n 1,' the e ror term, e is con-

oun, ddi d y"-T ith the tem2bystudent ,tec within class) inter-
c ...

,,, actipn,, emls(c). !In this 'case:-.13Triss(in the split-plot .

4- ---,,*. .

; : s ,

, design' replaces 12.4risi-,aan4s' te_0(cWirk.he faCtOrial design.
.

.

,/ ,:,
.. \

NTerminology _ 5, \ . \ ,s
V :

i 1 ,\
I ' .

most part, representatiVe of ,the terminology used in texts on
-

t
/

the terminology used, irl,ithe preceding section is,,for,the7
'

t2 ,,.
'1%EppOrileIntal design (e..4. Kirk,..1968m"and Winer, 1971):SinCe

h ,

'the unit Cf analys*s udde consideration here,
,

\'

et tall. (1972)-44dsiy that the spiiit-plot and
I 1 k' .1.:t'::.... fr4 , t_; 1 1 1 , :' , ;

-%-1':,-faci.rial:dPsi!gns have tt4(5*4atqts.(studerits'and items) .
...-

. --,,
-. ,1 "'... : ,:,': 1 i- -4. .,;-4 .1 / : !.

r,..0.7,4; 4, t. .o..- , .1 '
I, , - 4'

q :...*.j..4 % I . ' '' T."4* s

,

., ,
: :4 *L.,-, -44'; t- l'it

.-L
4 .

.

. i . .

-4,
4 / - . .s .

7- 1/-, .1 5 '''. *,I , L ( :-
Ti. 4.

4 ' i:. :V,1 ' 1 .
# i - re, , 1 1 ,,; : 1,4 , I

,! . 117 t ! '

O . , 4.! . ' 1 : 4 . .t

r
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Furthermore, Crotbach'et'ale.:i1972), would, distinguish

between the G study desigxi to estimate variance
/7

components and the D study design used to make decisions.

In theory, the G study design and the D,study design need

not be the samk; however, for:purposes:of simplicity, unless

otherwise noted' we asSume here that both the G and D studies
7,

employ a sPlit4lOtddsign.

Assumptions

The assumptions for the split-plot design model in

Equation'l are well documented in the literature and experi-,

mental deSIgn texts. However, we wish to emphasize two bf

these assumptions. First, each effect in the model is assumed

to be independent of every other effect. Second, in order to

make the estimates of theefects unique, the expected value

of each' effect over any of its subscriptsis set equal to.zero.

This second assumption is especially critical to an under-

standing of subsequent parts of this paper; however, this assump-

tion,is easily misunderstood. Consider the effect ac in

Equation 1. Suppose, fdr some study, we take a sample of n ,classes
41K

'from a population of N classes. The second 'assumption implies

that the sum of a
c

over the population of classes is constrained

tobezero,andthesumofthe'estimates(ofa_over the sample

of n
c
classes is constrained to be zero. Ho ever, it is not

necessarily true that the sum of a
c

over the sample of n
c

16
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4

classes is zero.. Using," It to indicate a sample mean,
.,-.

.

"-" to indicate a population
i

mean
,
and "^" to indicate.and

..

the estimated value, the second assumption means that
il,

_)8a equals' zero, a. equals zero,-but a. does not necessarily

!equal zero.

Generalizability Coefficients from a Split-Plot Design

By definition, a generalizability coefficient is the ratio

of the universe score variance. to the expected value of thee

observed score variance. For the split-plot model, with class

as the unit of analysis, four different generalizability

coefficients can be obtained'. gach of these coefficients is

charactei.ized ]y a different. de of universe score.

and, hence, a different definition of error. However, fOr,

each of .these coefficients, the- expected observed score

variance is identical.

Expected Observed Score Variance

Because the effects in Equation 1 are assumed to be

sampled independentlyi the expected observed score variance

is simply the sum of the variances of the separate effects.

For a-gample of n, items and ns students, the expected observed

score variance for class means is:

17
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2 \
a (7,a7)

c2
(as) a

2
(Bir ,a(37,e) 'a2

(a) + + (3)

ins
d

nines ---

where a Of cof) is the population'variance of in_

Equation 1: The notation a2
(11.,(17) is used to emphasize that

the student effect, 7
s

0

and the class by _student interaction,

cores' are confounded in the effect 7 s(cr A similar interpre-

tation can be given to a 2
(137,c07,e) assuming there is only one

observation for a given student responding to a given item.

There is no variance component for the item effect because

the item effect is constant fOr all classes,, and, therefore;

2
-(3) is zero. Note that the.population variance.components,

1in Equation 3 are for samples of tone item and one student.

In subsequent sections ye develop the universe score

.
variance-and the associatedgenerapizability coefficient for

four different universes' of generaliz'ation: (a) an infinite

universe, of students and' items,- (b), an in inite universe of

'' !Ctudents and a finite of items, (c) a finite set of

students and an infinite universe of- .items, and (d) a finite

set of students and'a finite set of items.

Infinite Universe of Students'and Items

If the objective of a:.) study is to generalize to an
. ,

.

infinite universe of students and items, then the universe of

generalization is the completely xossed universe of

18

I 1
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admissible observations. This analysis treatsthe set of

items used in the D study as a sample from an infinite

universe of items that could have been used to measure the

general out.corte that is of interest; and the analysis treats

tie students in.each class as sample from the infinite
41`

universe of students who ,might hive been included in the

class. The universe score for each class is the expected

rr f

value of the observed mean over al possible samples o-f.

- students and items in the universe cif admissible observations,

and is 'given by

= p + a
c

The corresponding universe score variance is

- (.,v) = a
2
(a )

The universe spore can also'be obtained by taking the lirdit

of the observed tcore variance in Equation 3 as ni and n
s

both go to'infinity.

For generalization to an infinite universe of students

and items, the appropriate ,generalizability coefficient is the

ratio of universe score variance (Equation 5) to expected

observed score variance (Equation 3):

19
.r
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a2 (a)

a
2

(ff,aff) a
2
(cO) 0

2
(3nof371.,e)

a
2
4a) + +-

n. n. ns 1 -1-G

. (6)

The notation gp2 i5 consistent with Cronbach et.al. (1972)

.and indicdtive of the fact that generalizability coefficient'S

can be interpreted as squared correlation or intr4class

correlation coefficients, The letters IS and I i,n parentheses

indicate that the universe of generali atidn is an infinite

universe of students (S) and an infinitd universe of items (I).

The brackets in the denomindtor identify the components of

variance that jointly constitute error variance when the

universe score variance is 0 2
(a). Thus, the expected observed

A

score variance can be viewed as universe-score variance,'.plus

error variance.

4

Equation 6 results from the dssumptidn that the universe .

of generalization is, in effect, the completely crossed

universe of adtissible observations. The saqtantive questions

in a particular D study may indicate that the universe of gener-

alization shout be restricted to some subset of the completely

:)crossed univers of admissible observations. That is, the

investigator may wish to generalize to some finite subset of

the possible conditions (or levels) for one or mote facets in

the universe of admissible observations. In particular, in

4

\ 64

20
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some cases, it,May not be appropriate to generalize beyond the

specific conditions' of some facet(s) included in the D study.
e,

For example, an investigator who ig.interested in how

well a training program has taught students'to perform a

particular set of mechanical tasks is not interested in gener-

alizing to abroad set of such tasks. The finite set of tasks

on which observations are taken may constu.tute the universe of

generalization for the' task facet. (By coqrast.,, if the hypoth-

esis:4nder consideration concerns general mechanical ability,

the universe of, generalization would be taken as an infinite

universe of possible tasks that might. have been observed.)

Theoretically, then, for the split-plot design, some

D studies may require a universe of generalization in which

' the set of items (or tasks) is finite, the set of studenit is

finite, or both are finite.

Infinite Universe of Students; Finite Set Of items

If generalization is to the finite set of items included.
. . .

. . 4
in the D sttipilt, then

,

the universe score is the expected value

of the absbrved mean score (X
c..

) over that particular -set of
. _

items and over all students. The components that enter into

the' observed score are not changed by restO.cting the -universe.

of generalization, and Equation 1 is still the appropriate

model. In taking-the expected vafil only terms with

s as a subsdript become .zero, and the- uni erser score is.

21
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1

given by

c
= p a

c
+ a + aac . (7)

The item effedt and the class by,item interaction are present

in Equation 7 because the expZted value is mot taken over; all

items in the universe of admissible observations, and there

will, in general,, be systeMatic effects due
"/
to the finite. set

of items included in the universe of generalizatiion.

The universe score variance corresponding to Equation 7is'

a
2

(aki)

a
2
(v,) =

2
(a) -F

n.1
(8)

.

Equation 8 can also be derived from Equation,3 by taking the

limit as h
s
approaches infinity.

all classes, and a2(S) is zero.

Again,
13.

is a1/4constant for

For generalization to an infinite universe of students (S).
* ,

and. the finite set of items (I*) used in the.D 'study, the geher-_

alizability 'coefficient is obtained from Equations 3;and 8:

=

021
02(:1(3)

(9)

a)-
n.

p2(S,I*)
a2

(as)
a2

(7,a7) 62 (air,aai,e)[2
n.
--1

ns ° n.n
7174.
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Infinite Universe of Items; Finite Set of Students

In educational research and evaluation, it is generally

inappropriate to restrict the universe of generalization for

the student facet. .For diagnostic purposes,4we may be inter-
.-

ested in the universe score for a single student, but class

means are seldom used in this way. In program evaluation and /

research, the intention is almost always to generalize to

some population of present and/or futilre students.

NeverthelAe, one can obtain the generalizability

coefficient for a finite set of students and an infinite

universe of items. Later we will show that this coefficient

corresponds to one of the Statistics reported in the literature

for estimating the reliability of class'means. For this

universe of gcneralizatiOn, the universe yore is

. -

vc = p + ac +
.(c) '

and ;the -universe score varia is 41
)

a
2
(n,an)

2
(v
c

) = a
2
(a) + (11)

n
---5

variance due to the student, effect does not go to zero

_ because a different set (4 students is in each class.
--'1

. e.
. .

.

Equation 11 can also be derived from Equation.3 by taking the

. limit as ni approaches infinity.

23
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For generalization to an infinite universe of4 items (1)

and the finite set of students (S*) used in the D study, the

generalizability'coefficient is obtained from .-Equa'tions 3 and 11:

2
a (ff,aff)

(a) +

[a2 (a) +
a
2
(ff,aff)

n
-s

n
-s

2, , 2
. (12)

[a (as) a
+ +

n. in-1 -1-s

Finite Set of Students; Finite Set of Items

Restricting generalization to a particular set,of

students and a particular set of items is even less likely

to be appropriate than restricting the universe for either

facet and generalizing over the other. The results are

presented here because they lead to a coeffic ient that corres,-

ponds to a reliability coefficient that'has been proposed for

class.metAns. The universe score for a fixed' set of students

in each class, and a 'f.i.xed set of items for all classes is

P ac 7T.(C)

and the universe score variance is

+ (3rr.
.(c) ;

.----t-4'

a
2
(ff,aff) a2 (a6) a

2
(f371,a070

a
2
(v
c

) a
2
(a) + + +

.n n. n. n-s -1 . -1 -s..... -a

(13)

he universe score variance is estimable if the effectsi

(14)

Bffis(c) and e
o(csi)

in Equation 4, are not confounded; that is,
_
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. 4
..Equation (14) is estimable if there is more -Ellen one rei4i-

1,.,
. . .

cation of each class-student-item observation. This coeffi-

cient can also be estimated if it can,be assumed that

ir) equals zero; in this case, 'the true score-1-s

variance is given by the first three terms..in Equation 14,

and these,variance Qompopents are all estimable:

For generalization to the finite set of.items (I*) and
A

the finite Set of students (S*) in the D- study, the gerierali-

zability coefficient is obtained from equations 3 and 14:

2
p (S* I*)

.cr

2
(ff,a1T) a

2
(aa) a

2
(aff,aaff)

a2 (a) + '+

-s n. n. n
-1-s

(15)
a
21

ff,cor) a2 (as) a
2
(aff,aaff) a

2
(e)'

'

[3.2(a)
+

s n1. n- --s n n.n

where n
o is the number of replications of each class-student-

item observation.

Classical 1Reliability and the Spearman-Brown Correction

All four of these generalizability coefficients have the

( general form of a reliability coefficient if true scofe is

defined to be equal to the appropriate universe score. The

differences among the coefficients are, then, the differences

among their definitions of true score and error score.

2
For pp (S,I), 'Equation 6, the universe score variance is

the sampling variance of the main.effect due to ,classes, a
2
(a).

- I
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All other componentsn the observed4'Score variance are

sources of error. In classical test theory, the error variance

is undifferentiated; increasing the number of observations

by a factor of Mleaves the true score variance unchanged

and decreases. tire error variance by 1/M. 4This regu-

larity is the basis for the Spearman-Brown formula for changes

in the lenAh of a test. In Eqtation 6, the error variance (has.
/ .

no such simple relatiOnship to,the number of students, items,'

or the,,product of the two; consequently, the Spearman-Brown

formula does ncI.,apply. 'It is, however,teasy to compute

a 2
;pi (S,I) for any number of students and items by substituting

the approprite values of ns and ni'in Equation 6.

e
For AO2 S,X*), Equation 9, where interest is restricted

to the finite set of items in the D study, the claSs by item'

interaction iJ a component,in the 'true score variance. For

t,.increasing the 'umber' of students by athis coeffic

factor of M will decregse the errom"-v&riance by, 1/M but

will'not affect the universe score variance. Thus, the

Spearmrn=Brown formula holds
.

or the number of students..

However, increasing the number of items by a factor of M

doe's not decrease the error variance by 1/M and doe's

affect the universe score variance. Thus, the Spearman-Brown

formula does not hold for items. -

Similarly, the Spearman-ltrown formula applies to p2(S*,I)

for changes in kthe number of items but not for change in the

number of students. Finally, the Spearman-Brown formula

'\
applies to F;()

2
(S *,, I *') for.changes i2e,he number of replications,_ _

$

AY
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-
but does notapply'for changes in the number of students or the

number o f items, because suchIchanges affect the universe

Is e variance. .r . .

'... Estimation of Variance Coponents

The process ofAobtaining numerical estimates of4
-general,izability coefficients usually involves two steps.1

First, tie components of variance 'are'estimated froM the G

study. Then, the generalizabili,ty coefficient is calculated%

using the estimated variance components and the sample sizes'

from the D.study.

General procedures for the estimation of variance compo-

nents from computed mean squares are discussed by Cornfield

and Tukey (1956), Ceolnbach et al. (1972),, Millman and Glss
,

(1967), and by most .standard textbooks on experimental design"

11e.g:, Kirk, pp. 266-212, and Wi ner,.pp. 321-332).
41

' In'the next two sections we treat the estimation of

variance components when both the G'andD studies use split-
,

plot-deskutiseqUently, we briefly consider the estimation
t

of variance'componellts when the G study is a factorial deSign

and the El study i-a split-plot design.

In order to .estimate the variance components, we must

Specify whether the model assumes random, mixed, or fixed

-.effects. The choice among a random, mixed, Or fixed effects

mo del is closelyrelated to the choice of a universe of

generalization. To trot a 'facet as a random effect is to say

-Z^
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that the observed conditions of the facet are sampled from

an infinite universe of similar conditions. To treat a facet

as a fixed effect is to say tIiat' the observed conditions of

.qhe facet constitute the. universe of conditions of 4e facet.

In subsequent sections we discuss the choice among random,

mixed, and fixed effects models in the G study, and the impli-

cations of this choice for later D studies.

Random Effects Split-Plot Design

.

1

The four generalizability coefficients have all been -)

developed in terms of components of ,variance 'for a random 7-

effects analysis of variance. It was assumed that the

and the conditions of the two facets were sampled fromInfiKite

universes of possible classes and conditions. The fortula:

for -the expected values of the mean squares, based on 'a random .

Modeare presented in Table liwhere it is assumed that all

classes have the same number of students.' In Table 1, primes 1
-I

are psed with sample sizes in order to distinguish G study sample'

sizes f m subsequent D study sample sizes. Table 1 'als0 provides

estim es of the'variance components in terms of mean squares,

from the random effects model.
, 1

Insert Table 1 about here

.

Using the estimated components of variance In Table 1 and

the sample sizes from the D study, we can estimate each of the

four generalizability coefficients discussed previously. That

is, the components of variance from the random effects model

can be used to estimate generalizability coefficients for random,

28
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Mixed, or fixed effectS. General*, this is the most effi-

cient and useful way to calculate these coefficients. However,,-
if both the G and D study imply the same universe of gerierli-

:

zition (e.g., both 'have items ,fixed arid students random), then

-lone can redefine-the 'structural model and calculate the

appropriate generalizability coefficiept more directly.

Mixed Effects and Fixed Effects Split-Plot DeSigns-

-Thieanalysis of variance IT 'Table 1 treats all effects

Generaiizability
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as random effects.',The data from the G study--8analso be-
_ - ti-.-;

analyzed using a mixed model in which one of- .facets is -
-.:-.7- ..,:r

treated as a'fixed effect and the other is treated-as 4' random--- .

effect. In treating a facet as a fixed effect', the inveleti--
r I

gator is deciding that his interest is in the observations ',.
,

collected under the finite set of conditions of the fixed

facet and in no other, pdssibie conditions of that facet. For

the sp-lit-plot design employing. mixed effects, either items or

student will be fixed but not both.

If the' itemdfacet is fixed and,the student facet is random,

then_ the finite set of" items under consideration constitute the

universe of generalization for.Ahe item facet. Thus, when we

take the mean over items in Equation 1, the item main effect

and all other effects involving items are zero., The resulting
/

structural infidel for the obderVed mean score for a classis t
.r..

X (16)c P t a6 Tr.(c) -

9
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Using Equatj...on 16, the expected observed scare valiance is
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PG
2

*
(X
p..

) = c
2

* I
(a). + c

2

* '

(T aw
s

)/n';
I I

the universe score variance is

2

I*
(v

c
=

2

*
(a)';

'

and the generalizability coefficient is

p2(s,I*)

2

I*
(a)

.

2

I*
(a) +

2
(w,aw)/n

I* -s

r

where the subscript I* is used to indicate that these

(17)

(18)

(19)

Components of variance are estimated from a mixed model with

the item facet fixed. Equations 9 and 19 have the same inter-
.

pretationc and, as shown below, they are algebraically identical.

v.-
Insert Table 2 about here

Table 2,lists the expected values of the mean squats for

a mixed model ANOVA with the item effect fixed and all otier

effects random.' Table 2 also provides the estimated values of

the variance components ;in terms of mean squares. In-

..--
the mixed model in Table12 with the random model in Tab-X61/4-..We

'note that the mean square's in both tables are identical for all
.

sources. Furthermore,

MSC) MS(S) _

a81*o
ti

n.n
s
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MS (C) - MS (S) - MS (CI) + MS eR) ms (CI) ms (R)

I n'
-1-s

82 (a) +
,

8
2 (aWn!

4

Similarly, it is straightforward to show that

A2 ,

upc01.1(170 T 0
2
OT,(170 + 0

2
(13Tr,aSTr,e)/n! .

n'n.1 n

(20)

(21r)

The algebraic equivalence of.Equations 9 and 19 'is now

immediately evident.

AlsO, if the.number of students and the ni.imber.of items

are the same in the.G and D study. (i.e., n! = n and n' = n
-a. s s),

it is easy to show that, for both the random and mixed models,

the estimated value of the coefficient is given by

MS (C) MS (S)r 2
p (S ,I*)

MS(C)
(22)

b

The random effects ANOVA outlined iri'Table 1 attributes

the mean square for classes to four sources, -two of which

involve the sampling val.: nce due to item effects. In the mixed

podel ANOVA outlined in Table- , the mean square for claS'ses

is attributed to two effects, and the interaction effects

involving items do not appear. In the mixed model, there can

be no sampling variance for item effects - because mean scores

are not based on a sample of items but on the universeof items.

6
The variance that was attributed to item effects in the random

31
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model must now be attributed to the sampling of students or

to differences between the universe scores for classes.

A comparison of Table 1 with Table 2 shows that the

mean squares used to.estimate 2
(13w,a0w,e) and

2
Or aw) in

*
the random model: are used to estimate a

I*
(71-

'
car) in the mixed

.Similarly, the megn squares used tooestimate a 2
(a6)

and o2 (p.) in the random model are used to estimate a
I*

(a) in

-the mixed model. The estimates of the class effect aid the

student .effect are larger for the mixed model than they are

for the random model.

_This rpdistrib tion does not affect the expected

observed score variance, but it does change our estimate of

the universe score variance. That part of the mean square

for classes that is assumed. to be die to sampling of items

in the random model is assumed to be due to differences between

class universe scores in the mixed model.

The mixed model has-led to a somewhat simpler expression

c'

for -Ap
2
(S,I*) , and it will yield the'same_vlue'for the

N.,-

estimate of this coefficient. Within- the assumptions of the

mixed model it-is not po Bible to estimate the generalizability

coefficient e 2
(S,I), which assumes generalization over both

facets. For this reason, the mixed model -is not recommended

fo the analysis of the G etudy.ciata. Thp mixed model has ,been

introduced mainly,tO provide addi..-Lional insight into the nature

of the differences between the gneralizability coefficients
f

32
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If the G study is a factorial-design and the D study

is a split-plot design, then to calculate generalizability

coefficients for the,p_study. we estimate the appropriate

introduced earlier.

Geheralizability
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Similar analysei7:-can be carried Out for the fixed

effects, model and the second mixed model in which the'student

facet is fixed and the item facet,is random. For both of these

modelsthe generalizability coefficient is equal to the

variance attributed to the class effect for the particular model

divided by the estimated observed score variance-. The numerical

estimates of these coefficients will be identical to those

previously obtained using componeAts of variance from the

random. model.

It is generally best to estimate.and report components

of variance for the random model. If the components of the

random-model are known, any of the four generalizability

coefficients can be estimated; but the components from a model

with a fixed facet cannot be used to estimate a generalizability

coefficient that assumes generalization over that facet.

Random Effects Factorial Design.

ariance components from the G study factorial design

ee,Equation 2). Since the effects are independently'sampled,

a
/..; _41 g-2 )- 'a 2 'oair

j in terms of variance components from

the factogial design. Simdlarly,
2
(07r,a07r,e) = a

2
(07r) +

(321a07r,e) ;if-.there is only one observtion per class-student-

33
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item combination in the G study; or a
2
(f3v,a0R,e) = c

2
(air) +

2
a (as*) +

Q2
(e) if there are replicated observations. Since

a
2.(
a) and a2

(a6) are unconfounded in both the factorial and

split-plot design, these variance components have the same

interpretdtion in both designs.

Given the above relationships, we can estimate each

of the generalizability coefficients for the split-plot

design, with the possible exception of.0p2(S*,I*), Equation

15.' This is the appropriate coefficient when the item and
iF
student facet are both fixed. It can be estimated only if:

(a) there is more than one observation for each class-student-

item combination or (b) we assume that both 62
(S n) and c

2
(af3y)

are equal to zero.

Generalizability Coefficients as

Expected Values Of Correlations_

Each of the four gerieralizability coefficients can also

frel interpreted as / the expected value of a'correlation

between pairs of measurements on a sample of classes. In order

to examine the dependability of class means as correlation

coefficients, it is necessary to obtain two measurements on

each class'. The appropriate procedure for obtaining these two

measurements depends on the definitions of the universe of

gel1eralization.
40

Generalization over Students and Items

If both students, and items are sampled from infinit

34
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Universes, each measurement involves a sample of students

and a sample of items: The- sampling of students and-items

for a second set of measurements is independent of the- first.

Using the random model each measurement has the form

X
= a 13. "c. 137r

+ e (23)c.. (c) .e(c) -o(c..i.

For any pair of measurements, X. and X'
..,

each measurement
c

has the same expected observed score variance, given#by

.Equation 3.

The expected value of the covariance of X with X.'
c.. c.-

is
2
(a). The Other effects are sampled-independently for the

two sets of measurements, and, therefore, theAP expected values

of all other terms in the covariance are zero.

The expected value of the correlation between the two

mean scores is approximately equal to the expected value of

the covariance divided by the expected value of the variance

(Lord & Novicki 1968, pp. 201-203):

a(r(X ,XI )] =
c.. c..

a
2
(w,aw)

a2
(a8) a.

2
(871.,a0w,e)_

. a2 cd) + + . 4.

n n. n.n
s i 3.s_

Or

a2 (a)

which is identical to Ep2(S,I).

, (2.4)

us, the generalizability coe!ficient, generalizing over

both Students and items, is approximately equal to the
3;

35
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expected correlation betWeen two Sets of measurements taken
o

on a sample of classes, where, the two sets of measurements are

based on independent samples of both st114entsland items,

A correlation of this kind can be obtained on a set of,..classes

by taking. the mean olialf of the studenit.s and half of the

items as one measurement, and the mean on the remaining students

and items as the o her measurement. Unfo'rtunately, it is not

possible to apply the Spearman-Brown formula in this case; ..

consequently, it is generally necessary to use the ANOVA

procedures outlined earlier.

Generalization over Students Only

e. If generalization is to an infinite'universe of students

and to the finite set of items used in some D study', an

appropriate pair of measurements would use the same items but

independent samples of students. An estImate of the correlation

coefficient could be obtained by taking,a random split on each

class and correlating the mean scores over the two halves of

each class and over all items. In this case the Sparmari-
,

Brown formula does apply and can be used to estimate the

correlation for full classes-.

The derivation of the expected value of the correlatiop, -

corrected for class size, over all possible splits bp classes

is found using the same procedure employed in theikevious case.

The expected observed score variance for the twoimethpures is

_again given by Equation 3.' The expectedvalue.ot the,covariance
....

,

IP 6

\
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however, has one additional term. Becal,ise the same sample of

items is used for both measurements,

covlat3c.,a) = a
2
(aWni

and the expected value of the covariance is

_62
(a) + a

2
(ae.) ni .asp

The ratio of the expected covariance to the expected observed

score variance is .Ep2(S,I *). This coefficient, generalizing

over students but not over items, is approximatelysequal

the expected value of a, split-class estimate of reliability

that is corrected for class size using the SpeArman-Brown

formula.

.other Universes of Generalization

Similarly, it can be shown that the coefficient fp2(S*,I),

for generalization over items but not over students, is approxi-
/

mately equal to the expected Value of the split-halves relia-

bility corrected for teat length. Also, the generalizability

coefficient .E:p2(S*,I*), generalizing only over random error,.

is approximately equal to the correration between two independent

measurements of the class mean using the-same items and the

same students for both measurements.



Generalizability

j 35

Previously Reported Reliability Coefficients

The earlier sections of this paper have presented of

discussion of four general.izability coefficients for estimating

the dependability of'class means. In this section, three

coefficients that have been proposed for estimating the

reliability of class means will be presented and related tothe
7

generalizability coefficients discussed earlier-.

In a discussion of the statistical properties of school

,means, Shaycroft'(1962) proposed the following coefficient for

estimating the reliability of class means:

-2
aA

r-- = 1 - (1 - rte) )AA
2n as A

where

'r--'E reliability of class means,AA

AA E reliab4ity of student scores,

ns E number of students per class,

a
A E standard deviation of'class means, and

QA E standard deviation of student scores.

ti

Q

a

(25)

The tran81ation of this formula into the notation used in this

paper is straightforward. '

2 is by definition the.expect.edFrom previous results,
A

40"
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in .Equation 3.

. Brennan (in press) provides formulas for aA and r
AA in terms'A

of components of variance from the split-plot model:

a2 =
2
(ff,a7r) + Ka

2
(a) + [Ka

2
(a8) + a

2
(87r,a87C,e)J/m. (26)

and

where

a
2
(R,a7r) + Ka

2
(a)

(27)AA
2

aA

n
s
(n

c
- 1)

K
n n - 1-s-c

(28)

Shaycroft's formula assumes that .the G study and the D study'

use the same data; therefore, there is no need to use primes

to distinguish G study and D study sample sizes.

2 . 2 .Substituting for rAA, aK, and aA in,Equation 25 gives

Shaycroft's formula in terms of components of variance for the

random effects split-plot model:

r-- =
AA

a2 (a) +
a
2
(R,a7r)

+ L
[a.21

r ;.

s

a
2
(R,cor) a2 (as) a

2
(OR,a8T.,,e)

a
2
(a) + + +

'n
s

n. n n.-1 -5-1
$ - , -

)
- _

ftw

'Nu

ti
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n
c
(n
-s

- 1)-

A

L (39)
n

. .

-
-s-n c

l

The coefficienttL-in Equation 29 depends upon the:numbez: of

classes and the number of students per class used to estimate

2 --r
AA

and a
A'

The coefficients K and L arise'because the

student effect is confounded with the class"by student inter-

action in the split-plot design; thus, these coefficients

reflect complexities in calculating the appropriate number

of degrees of freedom when the sampling of students is

stratified by class,rather,than completely random.

Since n
s

and n
-c are both greater than one in the; split=-

plot design, L is between zero,and one; and, therefore,

a

2 e 2 .

Pp (S,D p*) <= r-4 <= p (S*,I*).AA

ro

Ylo

el?

'40
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Thust Shaycroft's coefficient 4Equ ion 251 overestimates

gp2(S,I*) and undersetimates fp2(8*,I*).,

In most patactical situations, ns' (and possibly n) is

likely to be fairly' large; and, consequently, the coefficient

L will be_close to unity. Assuming that 02(8n,a8n) is close
.

to zero, it follows that rA will be approximately equal to

Fp-2 (S*,I*),

Willy (1970) has proposed an intracl4ss correlation
,

..,

coefficient for estimating the reliability of class means.

In his analybis, the estimated universe score variance is
.4*'a 2

(0.)* -t- ta2(a8)]/n., and his coefficient ,is. equivalent to

.

Equation _22, pp 2
(S,I*) in the speciaLwcase where the d and

D studieS are identical.

Thrash and Porter (1974) have discussed two procedures

for estimating-the reliabil4y of class_meabs. The first of

these, procedures is to split each class into two random halves,

calculate the correlation between the mean scores for the half-

classes, and then use the'Spearman-Brown formula to obtain the

coefficient for full classes. It has already been shown that .

.4

the expected value of coefficients calculated in this way,
1 %,

over all possible splits on claskes, is giyen by Equation 22J

gp
2
(S,I*), which is equivalent to Willey's,coefficient.

The seqpndprocedure discussed by Thrash and Porter is to

randomly split the test into two halves, correlate the half-test'

41
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4

means for fullz classes, and then use the SpearmanTBrown

formula to obtain' the coefficient for the full-length test.

The expected value of this coefficient, over all random splits
r

'`on the test, is 2
(S*,I). 'This procedure is implicitly

generalizing ofer'items but not over students. Because

Thrash and Porter recommend the split -test procedure over the

split-class procedure, \we will rafer to the split-test coeffi-
,

cient as Thrash and Porter's coefficient.

Of the four generalizabil*ty coeffiCients discusS-ed

.

earlier, three are directly related to coefficients that hav-e

been.prop;os'edIfor estimating the reliability-of class means.

The authors are- not aware of any analySis of the dependability

of class means that uses traditional reliability theory and

develops a-reliability estimate e4uivalnt to
2
(S,I) .

4W . *A
2,--rThe 'omission of 4:p

2
(S,I) is not die-to chance.

Traditional reliability theory incorporaes a univariate inter-

pretation of error. " The

differ somewhat, but the errors are

assumptions made:, about error variance

aiways,:assumed\to_be drawn

SincephS,I*V, 142(S*,I)from some univariate distribution.

and Ep2(S*,I*) all arise in the

.is univariate, these
low

the framework of. classical

context .oNAOd4ls whe're error

perfedely-omPafible withcofficients are

however, the appropriate

reliability theotyN.,ir .E.'0Fif,f)/.
,\,-:

model involves two dist01-# csamp819Lents
,

cannot be cii*ned i*
,....

' -, % .

A '''''''':'--
.. ,....,, : ,..i,1

of error whose separate contributions

(42
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- r, . ., ,/

*a -s'ingl:e tnivariate/error term. Therefore, the appropriate

rmodel fOr S.4),
2
(S,I) does not arise` naturally within classical

reliability theory.

Choice Of Coefficient 4hen

Class is the Unit of Analysis

ei
The choj:ct of ah appropriate generalizability coefficient

.

for a,particular study depends upon the universe of generaliza-
,,.

tion that -is intended.

Whencclass is the unit of analysis, it is 'difficult to

conceive of situations in which the interpretation of the
.

results of a research Or evaluation.study applies only to the

--ttdents involved in the study. If the results of studies

involving new curricula-, teaching techniques, human learning,

etc. are to have more than anecdotd1 interest, they must

be generalizable to some universe Of stuSentS beyond thope

who actually ekperienced the treatment understudy. The

intention to'generalize to -some larger universe of studentsAs

quite explicit whenever v67.1tion among students is used to

estimate sampling error.

Also, it is'usually inappropriate4to restrict generaliza-

tion over items to the particular finite set oitems used in

some study. However, in educat4.onal research and evaluation,

it does 'sometimes happen that the set of items in the study

exhaust thi universe of behaviors that are of interest. In

such cases, it is not appropriate to generalize to a wider
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universe of items. For example, if a dental hygiene program

is intended to train childeen in the use of a few basic

skills, then the items used .to measure the effectiveness of

the program might exhaust the universe of interest.

The above obServations implY-that, for describing the

I.dependability of class means, ecp
2
(S,I) is usually the most

appropriate of the four generalIzability coefficients

discussed in this paper. p12(S,I*) appears to be appropriate

in some cases; but Ep2(S *,I) and E.p2(S*,I*) are seldom, if

ever, appropriate. From this rationale we conclude that: 0

(a) Wiley's coefficient, which is equivalept to k7p2(S,I*),

is appropriate in some cases; (b) Shaycroft's coefficient,

which is an upper bound for pp 2
.(S,I*) and a lower bound for

2
p 06*,I*),'is perhaps appropriate in some cases; and

(c) Thrash and Porter's coeffcidnt is not likely to be

appropriate unless one can make a strong argument for restricting

generalization over the student facet.

In summary, clearly there`-Ts no universally .best

cient; the most appropriate coefficient can be identified only .

in the'codtext of a particulastudy. However, we believe
c 1.liat Ap 2

(SiI) is, in most0case, the most appropriate coefficipt

to use. We also'note &iat, froth examination of Equations .6, 9,

12, and 15., the following relationships hold:
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.Ep2(S,I) .Ep2(S,I *)
)5p2(s*,,*),

(32)

p2(S,I) <= Op2(S*,I)'<= (33)

r.
and $p2(S,1*) is-greater than Pp2(S*,I) if

s 0
2
(aB)

> 1.

n.a 2
(11-,cor)

Summary and Conclusions

Using generalizability theory in the content Of split-

plot deign we have developed.and discussed four generalize-

(-bility coefficients for describing the dependability of class

,means. We have shown that these coefficients can be

-obtained in three ways: ,(0 using. variance components -from a

(34)

random effects analysis of ,variance; (b) ustr53 variance compo-
.

'nents from a mixed or fixed effects analysis of variance; and

.(c) calculating the expeoted value of particular correlation
*1.

coefficients. These four generalizability coefficients have

been compared to three previously reported statistics for

estimating the reliabilitylof class means. Confusiciriends to
woo

arise because these reliability coefficients are character zed

by different definitions of error. Furthermore, none of thes

three reliability coefficients is equivalent to the generalize:-

bility coefficient fp2(S,1), which s, in our judgment, q
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it is understandable that jp?(S,I) has not been given

;=Much attention as a coefficient fordesc ibing thedependa-
-, -_,-

bility of class means., The three prevkousl reported

reliability coefficients,were developed using a univariate
. ,'

. ,

conception of error consistent with classical reliability

theory. p
2

multivariate(S,I), however, dependS upon a ultivariate
....,..- -

-.0

. _

conception of which is not easily accommodates in

classical reliabilf .theory, but arises naturally in

generalizability theory.

The ,generalizability coefficients developed heir are --

descriptive statistics and do not depend upon.any parametric

assumptions -about tile-distribution of errors. Such parametric
,

.

assumptions need /to be made if one wants' to establish confi--

dence intervals eor ptform statistical tests of sisnifidance:
-

However, the advisability of performing such, tests of signi-
_

ficance is questionable. Ekren if an estimated variance-compo,

nent does not possess statistical significance, it is an

unbiased estimate. Asl-such, it is better to use it than to

replace it by zero .(Cronbach et al., 1972, pp. 192-193).

In this paper we have considered class, as the unit of

analysis in a split-plot design. That is, we yave used the

word "class" to indicate an aggregate, unit of analysis with one

level of nesting. The extension to multiple levels of nesting
,
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is a relatively:straightforward application of thle procedures

discussed here (see Cronbach et al., 1972).

* We have assumed throughout this 'paper that classes are

a random effect. In oui.-judgment, this:assumption is

generally valid, Nevertheless, the formilas for the four
.

generalizability_coefficients from the split -plot design

are unchanged.if we assume that cla'ss s. Are, a fixed7effect.

Also, in order to simplify. the dliddssion, we have

assumed an orthogonal split-plot design in which the number

of students within :class', h , ip constapt over all classes,.
. ,

Procedures for doing an analysis-Of variance fora split-
,

plot design with unequal n's are-available in most standard

experimental design textp-(,g.,'Rirk,.1968, pp. 276-282;,

Wine'r, 1971, pp.'599-603).

Finally,:we, mote t he following recomm endation from the

most recent edition of Standards for'Educational & Psycho-

logical Tests (APA, 1974): the "estimation of clearly labeled

compotents of score variance is the most informative outcome of

a reliability study, both for the test develbper wishing

"tortIL6r6vp. the reliability of his instrument and for the user
....._, -_

desiring to interptet:tept scbtes with-maximum understanding"

(p. 49).- This is equally true whether the unit of analysis is

I
a person Or an-aggregate.of persons, such as a class. If

components of variance from a random egfects G study are
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then'a number of generalizability (or reliability)

coefficients are easily estimated, and a single generalizaL

bility study can replace a number of separate -reliability

studies.
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Footnotes

Since the bbserved score (X
c..

) is the mean over

items and ns students, the contributions of the various-

effects to the observed score variance (Equation 3) are

reduced in accordance with the Central Limit Theorem.

O

4

4
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.Table 1
e 1

Split-Plot Design Analysis of Variance

All Effects Random

Source df Expected mean.sguare (MS)

,'Classes (G) n' ,- 1 a
2
(f3n,aBIT,e) + n.a (707) e. _c

_.3.
...i

+ risld2(a13) + n!n's a2(a)..... 3.
Students (S) n' (n' - 1) a

2
(f3710131T,ej + n!a

2
(W,cr)

..zr-

Items (I) n! - 1 a
2
(137r,a131T;e) + n'a

2
(a13). 3.

-
.

+ n'n'a .2 (B)cs
Classes x Items (CI) (n' - a) 4n! -1) a

2
(Bn,aBir,e) + n'a

2
(af3)

--...
..,

Residual (R) n'(n! - 1) (n' - 1) a
2
(BIT,a$IT,e)

0
2
(137,aiiir,e) = MS(R)

e
2
(aR) = [MS (CI,) - MS(R)Ynt

s

2"
0 (71.,aoraf= [MS (S) - MSJR)Vn!

.

= i$S(C) - MS(S) rMS(CT) + MS(R)Vnin!

0
2
(B) = [MS (I) MS(CI,l/n'n"-C-G

4
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Table 2

,

Split-Plot Design Analysis of Variance

'Classes and Students Random; Items Fixed

Source df Expected mean squarea (M$)

Classes (C)

Students (S)

Items (I)

-cn' - 1

nc ' (n' 1)- -s

-
n! 1

Classes x Items (CI) (n' -,1)-(n1 -

Residual (R)

.1

n ! a
2.

(Tr car) + n , n,.. a
2

I* ' I. (a)

n
2.
02 (Tr cm)1* '

a I2*
(bn,abn,e) + n'a 2

-s I

+ n'n!a 2Ob)
-s -1 I

a I2 * (bw,abw,e) + n's a
*
(ab)

I

n' (n! - a) (n' 1)
a I2*

(bn,abn ,e)-
-1

-.-. 1- - -
.

4

et,2 (bn,abn,e) = MS(R)

01 *(ab) = [MS(CI) MS(R)VnL

8
I*

(Tr
'
an) = MSAS)/n!3.

OT2 *(a). = EMS (C) - MS(S)Vn'n!
-

81* = EMS(I) - MS(CI)Vnin!

O

a
Greek letters and e indicate random effect%; unitalicized

Latin letters' indicate fixed effects.


